Post

(problem solving) integration by parts and by substitution

๐Ÿ™…โ€โ™‚๏ธํœด๋Œ€ํฐ์œผ๋กœ ๋ณผ ๋•Œ ํ˜น์‹œ ๊ธ€์ž๋‚˜ ์ˆซ์ž๊ฐ€ ํ™”๋ฉด์— ๋‹ค ์•ˆ๋‚˜์˜ค๋ฉด, ํœด๋Œ€ํฐ ๊ฐ€๋กœ๋กœ ๋Œ๋ฆฌ์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค

1
2
3
4
5
6
7
8
<๋ชฉ์ฐจ>

1. integration by parts (๋ถ€๋ถ„์ ๋ถ„)
2. ํŠน์ˆ˜๊ณต์‹ & integration by substitution (์น˜ํ™˜์ ๋ถ„)
3. ์˜ˆ์ œ
 3-1. ๋ถ€์ •์ ๋ถ„(4๊ฐœ)
 3-2. ํŠน์ˆ˜๊ณต์‹ ์ ๋ถ„ (5๊ฐœ)
 3-3. ์น˜ํ™˜ ์ ๋ถ„ (3๊ฐœ)

1. integration by parts (๋ถ€๋ถ„์ ๋ถ„)

-------------------------------------------
(1) \(\int f(x)g'(x)dx = f(x)g(x)- \int f'(x)g(x)dx\)
(2) ์ ๋ถ„ ์šฐ์„ ์ˆœ์œ„๋„ ย  (์ง€์ˆ˜๊ฐ€ ์ œ์ผ ํฌ๋‹ˆ๊นŒ 1์ˆœ์œ„):
๋งค์šฐ ์ค‘์š”!!! ์ง€์ˆ˜ > ์‚ผ๊ฐ > ๋‹คํ•ญํ•จ์ˆ˜ > ๋กœ๊ทธ
-------------------------------------------

(1)๋ฒˆ ์ฆ๋ช…
\(\{f(x)g(x)\}' = f'(x)g(x) + f(x)g'(x)\)
์ด๊ฒƒ์€ ํ•จ์„ฑํ•จ์ˆ˜์˜ ๋ฏธ๋ถ„๊ณต์‹์ด๋‹ค. ์‹์˜ ์œ„์น˜๋ฅผ ์•„๋ž˜์ฒ˜๋Ÿผ ๋ฐ”๊ฟ”๋ณด์ž

\(f(x)g'(x) = \{f(x)g(x)\}'-f'(x)g(x)\)
์ด์ œ ์—ฌ๊ธฐ์„œ ์–‘๋ณ€ ์ ๋ถ„ํ•˜์ž
\(\color{red}{\therefore}\) \(\int f(x)g'(x)dx=f(x)g(x)-\int f'(x)g(x)dx\)

๐Ÿคซ์ฐธ! ๋ถ€๋ถ„์ ๋ถ„ ๊ณต์‹์—์„œ f(x)๋ž‘ gโ€™(x) 2๊ฐœ์—์„œ ์œ„์˜ ์ ๋ถ„ ์šฐ์„ ์ˆœ์œ„๋ฅผ ์ฐธ๊ณ ํ•ด์„œ ์ •ํ•˜์ž


ex) ๋กœ๊ทธํ•จ์ˆ˜์˜ ์ ๋ถ„

\(\int lnx dx=x lnx-x+C\)
์œ„์˜ ์‹์€ ์ด์‹๊ณผ ๊ฐ™๋‹ค \(\int 1 \cdot lnx dx\)
์ž ๊ทธ๋Ÿผ ์œ„์˜ ์šฐ์„ ์ˆœ์œ„๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ 1์„ ๋‹คํ•ญํ•จ์ˆ˜๋กœ ๋ณด๊ณ  lnx๋ฅผ ๋กœ๊ทธํ•จ์ˆ˜๋กœ ์ธ์‹ํ•˜์ž
\(\int 1 \cdot lnx dx = x \cdot lnx - \int x \frac{1}{x} dx \\ \quad\quad\quad\quad\quad = xlnx-x+C\)

์ค‘์š”! \(\color{red}{\Rightarrow}\) ๋‹คํ•ญํ•จ์ˆ˜๊ฐ€ ์ œ๊ณฑ์ด๋ฉด ๋ถ€๋ถ„์ ๋ถ„์„ 2ํšŒ, ์„ธ์ œ๊ณฑ์ด๋ฉด 3ํšŒ ํ•˜๋ผ๋Š” ๋œป
ex-1) \(\int x \left(lnx\right)^2dx\) ย ย  ex-2) \(\int x \left(lnx\right)^3dx\)


2. ํŠน์ˆ˜๊ณต์‹ & integration by substitution (์น˜ํ™˜์ ๋ถ„)

๐Ÿ˜ŽํŠน์ˆ˜๊ณต์‹

case 1) ๋‹คํ•ญํ•จ์ˆ˜ x ์ง€์ˆ˜ํ•จ์ˆ˜
case 2) ๋‹คํ•ญํ•จ์ˆ˜ x ์‚ผ๊ฐํ•จ์ˆ˜ (์—ญ์‚ผ๊ฐํ•จ์ˆ˜ ์•ˆ๋จ)

๋ถ€๋ถ„์ ๋ถ„๊ณต์‹์„ ์ ์šฉํ•˜์ง€๋ง๊ณ  ์ด์ˆœ์„œ๋กœ ํ•˜๋ฉด ๋œ๋‹ค.
(์™œ๋ƒํ•˜๋ฉด ๋ถ€๋ถ„์ ๋ถ„ 2๋ฒˆ ๋„˜์–ด๊ฐ€๋ฉด ์˜ค๋ž˜๊ฑธ๋ฆฌ๋‹ˆ๊นŒ)

-------------------ํŠน์ˆ˜๊ณต์‹------------------
\(\int (\clubsuit \cdot \Delta)dx = ๊ทธ\cdot์ -๋ฏธ\cdot์ +๋ฏธ\cdot์ -๋ฏธ\cdot์  \cdots\cdots\)
--------------------------------------------------

์ฆ‰ ์œ„์˜ ์ ๋ถ„ ์šฐ์„ ์ˆœ์œ„๋„๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•  ๋–„๊นŒ์ง€ ํ•˜๋ฉด ๋œ๋‹ค

\(\color{red}{ex)}\) \(\int x^3 sinx dx\)

ํŠน์ˆ˜ ๊ณต์‹์„ ์ ์šฉํ•˜์—ฌ ์ ๋ถ„ ์šฐ์„ ์ˆœ์œ„๋Š” ์‚ผ๊ฐํ•จ์ˆ˜์ธ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋„ค
\(= x^3(-cosx)-3x^2(-sinx)+6x(cosx)-6(sinx)+C\)
\(\color{red}{\Rightarrow}\) \(-x^3cosx+3x^2sinx+6xcosx-6sinx+C\)

๐Ÿง‘โ€๐Ÿ”ง์น˜ํ™˜์ ๋ถ„

\(\int x(lnx)^2 dx\) ย ย  ์ด ์‹์€ ํŠน์ˆ˜๊ณต์‹์— ํ•ด๋‹น์ด ์•ˆ๋œ๋‹ค.
๊ทธ๋Ÿฐ๋ฐ ํŠน์ˆ˜๊ณต์‹์„ ์ ์šฉ์‹œํ‚ฌ ๋ฐฉ๋ฒ•์ด ์žˆ๋‹ค
๋ฐ”๋กœ ์น˜ํ™˜์ด๋‹ค

\(lnx = u\)
\(x = e^u\) ย  (๋ฐ‘์ด e๋‹ˆ๊นŒ)
์ž ๊ทธ๋ฆฌ๊ณ  \(lnx=u\) ์—์„œ ์–‘๋ณ€์— ๋ฏธ๋ถ„์„ ํ•˜๋ฉด?
\(\color{red}{\Rightarrow}\) \(\frac{1}{x}dx=du \rightarrow dx=xdu \\ \therefore dx= e^udu\)

๋˜ ์ ๋ถ„ ์šฐ์„ ์ˆœ์œ„์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์ด ํŠน์ˆ˜๊ณต์‹์„ ์ ์šฉํ•˜์ž
\(\int (\clubsuit \cdot \Delta)dx = ๊ทธ\cdot์ -๋ฏธ\cdot์ +๋ฏธ\cdot์ -๋ฏธ\cdot์ \)

\(\int u^2e^{2u}du$ $\color{red}{=}\) \(u^2\cdot \left( \frac{1}{2}e^{2u} \right) - 2u\cdot \left( \frac{1}{4}e^{2u} \right) + 2\cdot \left( \frac{1}{8}e^{2u} \right) +C\)
์•„๊นŒ ์น˜ํ™˜ํ–ˆ๋˜ ๊ฒƒ ๋‹ค์‹œ ๋Œ€์ž…ํ•˜์ž
\(\color{red}{\therefore}\) \(\frac{1}{2}x^2\left(lnx\right)^2-\frac{1}{2}x^2\left(lnx\right) + \frac{1}{4}x^2+C\)


3. ์˜ˆ์ œ

3-1. ๋ถ€์ •์ ๋ถ„(4๊ฐœ)

(1) \(\int x lnx dx\)

sol-(1):
\(=\frac{1}{2}x^2 lnx-\int\frac{1}{2}x^{2}\frac{1}{x}dx\)
\(\color{blue}{์•ฝ๋ถ„ \rightarrow}\) \(=\frac{1}{2}x^2 lnx-\int\frac{1}{2}x\cdot dx\)
\(\color{red}{\therefore}\) \(\frac{1}{2}x^2 lnx-\frac{1}{4}x^2+C\)

(2) \(\int x^3 lnx dx\)

sol-(2):
\(=\frac{1}{4}x^4 lnx-\int\frac{1}{4}x^{4}\frac{1}{x}dx\)
\(\color{blue}{์•ฝ๋ถ„ \rightarrow}\) \(=\frac{1}{4}x^4 lnx-\int\frac{1}{4}x^{3}dx\)
\(\color{red}{\therefore}\) \(\frac{1}{4}x^4 lnx-\frac{1}{16}x^4+C\)

(3) \(\int ln(x+x^2)dx\)

sol-(3):
์ด๊ฑฐ๋ž‘ ์‚ฌ์‹ค ๊ฐ™์€ ๋ง์ด๋‹ค ย  \(\int 1\cdot ln(x+x^2)dx\)

์ด์–ด์„œ ์ „๊ฐœํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™๋‹ค
\(= x \cdot ln(x+x^2)-\int x \cdot\frac{1+2x}{x+x^2}dx\)

\(\color{blue}{์•ฝ๋ถ„ \rightarrow}\) \(= x \cdot ln(x+x^2)-\int \left( \frac{-1}{1+x}+2\right) dx \\ \color{red}{\therefore} xln(x+x^2)+ln \vert 1+x\vert-2x+C\)


๐ŸŽฒ(์ถ”๊ฐ€ ๋ฌธ์ œ) ์ž ๊ทธ๋Ÿผ ์ด์‹์„ ๋‹ค์‹œ ๋ฏธ๋ถ„ํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผํ•˜๋ƒ?
์šฐ์„  \(xln(x+x^2)\) ์ด ๋ถ€๋ถ„์— ํ•จ์„ฑํ•จ์ˆ˜ ๋ฏธ๋ถ„๊ณต์‹์„ ์ ์šฉํ•˜๊ณ  ๋‚˜๋จธ์ง€๋Š” ๊ทธ๋ƒฅ ๋ฏธ๋ถ„ํ•œ๋‹ค
\(=ln(x+x^2) + x\cdot\frac{1+2x}{x+x^2}+\frac{1}{1+x}-2\)
\(\color{blue}{์•ฝ๋ถ„ \rightarrow}\) \(=ln(x+x^2) + \frac{2+2x}{1+x}-2\)
\(\color{red}{\therefore}\) \(ln(x+x^2)\)

(4) \(\int x \left(lnx\right)^2dx\) ย ย  (๋ถ€๋ถ„์ ๋ถ„์„ ์—ฐ์† 2ํšŒ ์‚ฌ์šฉํ•ด์•ผํ•˜๋Š” ๊ฒฝ์šฐ)

sol-(4):

์ด๊ฑด ๋‹คํ•ญํ•จ์ˆ˜ x ๋กœ๊ทธํ•จ์ˆ˜๋„ค (์œ„์— ์ ๋ถ„ ์šฐ์„ ์ˆœ์œ„ ์ฐธ๊ณ )
\(=\frac{1}{2}x^2\cdot\left(lnx\right)^2-\int \frac{1}{2}x^{2} 2\left(lnx\right)\frac{1}{x}dx\)
\(\color{blue}{์•ฝ๋ถ„ \rightarrow}\) \(=\frac{1}{2}x^2\cdot\left(lnx\right)^2-\int x\cdot lnxdx\)
\(=\frac{1}{2}x^2\cdot\left(lnx\right)^2- \{ \frac{1}{2}x^2 \cdot lnx-\int\frac{1}{2}x^2\cdot\frac{1}{x}dx\}\)
\(\color{red}{\therefore}\) \(\frac{1}{2}x^2\cdot\left(lnx\right)^2-\frac{1}{2}x^2lnx+\frac{1}{4}x^2+C\)


3-2. ํŠน์ˆ˜๊ณต์‹ ์ ๋ถ„ (5๊ฐœ)

(5) \(\int x^2 cosx dx\)

sol-(5):
\(=x^2sinx-2x(-cosx)+2(-sinx)+C\)
\(\color{red}{\therefore}\) \(x^2sinx+2x\cdot cosx-2sinx+C\)

(6) \(\int x\cdot sec^2x\cdot dx\)

sol-(6):
\(=x\cdot tanx-\int tanx\cdot dx\)
\(๐Ÿญsec^2x\)๋ฅผ ์ ๋ถ„ํ•  ๋•Œ, ์™œ \(tanx\) ์ด๊ฒŒ ๋˜๋Š”์ง€ ๋ชจ๋ฅด๊ฒ ์œผ๋ฉด ํด๋ฆญ \(\color{red}{\Rightarrow}\) ๋ฐ˜๊ฐ‘๊ณฐ ส• ยทแดฅยทส”
์ž ๊น!! \(\int tanx\cdot dx = \int\frac{sin}{cos}dx = -ln\vert cosx\vert+C\)

์œ„๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ์ž‘์„ฑํ•˜๊ฒ ๋‹ค
\(=x\cdot tanx-1\left(-ln\vert cosx\vert\right)+C\)
\(\color{red}{\therefore}\) \(xtanx+\ln\vert cosx\vert+C\)

(7) \(\int4x\cdot sec^2 2x\cdot dx\)

sol-(7):
์ž ๊น ์ฐธ๊ณ ํ•˜์ž \(\int tan2x\cdot dx= \int\frac{tan2x}{cos2x}=-\frac{1}{2}\vert cos2x\vert+C\)

\(=4x\left(\frac{1}{2}tan2x\right)-4\left(-\frac{1}{4}ln\vert cos2x\vert\right)+C\)
\(\color{red}{\therefore}\) \(2x\cdot tan2x+ln\vert cos2x\vert+C\)

(8) \(\int x^4e^{-x}\cdot dx\)

sol-(8):
\(=x^4\left(-e^{-x}\right)-4x^3\left(e^{-x}\right)+12x^2\left(-e^{-x}\right)-24x\left(e^{-x}\right)+24\left(-e^{-x}\right)+C\) \(\color{red}{\therefore}\) \(e^{-x}\left(-x^4-4x^3-12x^2-24x-24\right)\)

(9) \(\int \theta^2sin2\theta \cdot d\theta\)

sol-(9):
key1: ย  ์ง€์ˆ˜ > ์‚ผ๊ฐ > ๋‹คํ•ญํ•จ์ˆ˜ > ๋กœ๊ทธ
key2: ย  ํŠน์ˆ˜๊ณต์‹
\(\color{red}{\therefore}\) \(-\frac{1}{2}\theta^2cos2\theta+\frac{1}{2}\theta\cdot sin2\theta+\frac{1}{4}cos2\theta+C\)

3-3. ์น˜ํ™˜ ์ ๋ถ„ (3๊ฐœ)

(10) \(\int x\cdot sec^{-1}x\cdot dx\) ย  (๋‹จ, x>0)

sol-(10):
์ฐธ๊ณ 1: ย  \(\left(sec^{-1}x\right)' = \frac{1}{\vert x\vert \sqrt{x^2-1}}\)
์ฐธ๊ณ 2: ย  \(\int\frac{1}{\sqrt{x}}dx = 2\sqrt{x}+C\)

\(\int x\cdot sec^{-1}x\cdot dx\) \(\color{red}{=}$ $\frac{1}{2}x^2sec^{-1}x-\int\frac{1}{2}x^2\cdot \frac{1}{x \sqrt{x^2-1}}dx\) ย ย  ์—ฌ๊ธฐ์„œ ์•ฝ๋ถ„ ๊ฐ€๋Šฅ
\(\color{red}{=}\) \(\frac{1}{2}x^2sec^{-1}x-\int\frac{1}{2}x\frac{1}{ \sqrt{x^2-1}}dx\)
์ž ์—ฌ๊ธฐ์„œ ์น˜ํ™˜ํ•˜์ž
\(x^2-1=u\)
\(\color{red}{\Rightarrow}\) \(2xdx=du\)
\(\color{red}{\therefore}\) \(xdx=\frac{1}{2}du\)

์น˜ํ™˜ํ•œ ์š”์†Œ๋กœ ์ด์–ด์„œ ๋‹ค์‹œ ์ „๊ฐœํ•˜์ž

\(\color{red}{=}\) \(\frac{1}{2}x^2sec^{-1}x-\frac{1}{4} \int\frac{1}{\sqrt{u}}du\)
\(\color{red}{=}$ $\frac{1}{2}x^2sec^{-1}x-\frac{1}{4} {2\sqrt{u}}+C\)
\(\color{red}{\therefore}\) \(\frac{1}{2}x^2sec^{-1}x-\frac{1}{2} {\sqrt{x^2-1}}+C\)

(11) \(\int^1_0 x^3e^{x^2}dx\) ์˜ ๊ฐ’์€?

sol-(11):
-----------์น˜ํ™˜ํ•˜์ž----------
\(x^2=u\)
\(2x\cdot dx=du\)
\(x\cdot dx=\frac{1}{2}du\)
------------------------------

์น˜ํ™˜ ์ „์— ์‹์„ ์ด๋ ‡๊ฒŒ๋„ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ์ง€ ์•Š์„๊นŒ?
\(\int^1_0 x^2 e^{x^2}x\cdot dx\)
๊ทธ๋ฆฌ๊ณ  x์— 1,0์„ ๋„ฃ์œผ๋ฉด u์˜ ๋ฒ”์œ„๊ฐ€ ๊ฐ๊ฐ 1,0 ์ด ๋‚˜์˜ค๋„ค
์ด์–ด์„œ ์ „๊ฐœ (ํŠน์ˆ˜๊ณต์‹ ํ™œ์šฉ)
\(\color{red}{=}$ $\int^1_0 u e^{u}\cdot \frac{1}{2}du\) \(\color{red}{\Rightarrow}\) \(\frac{1}{2}\left[ue^u-1\cdot e^u\right]^1_0\)
\(\color{red}{=}\) \(\frac{1}{2}\left[(e-e)-(0-1)\right]\)
\(\color{red}{\therefore}\) \(\frac{1}{2}\)

(12) \(\int^4_0 cos\sqrt{x}\cdot dx\)์˜ ๊ฐ’์€?

sol-(12):
-----------์น˜ํ™˜ํ•˜์ž----------
\(\sqrt{x}=u\)
\(x=u^2\)
\(dx=2u\cdot du\)
------------------------------

x์— 4, 0 ๊ฐ๊ฐ ๋Œ€์ž…ํ•˜๋ฉด u์˜ ๋ฒ”์œ„๋Š” 2,0์ด ๋‚˜์˜จ๋‹ค
\(\color{red}{=}\) \(\int^2_0 2u\cdot cosu\cdot du = \left[2u\cdot sinu-2(-cosu)\right]^2_0\)
\(\color{red}{\therefore}\) \(4sin2+2cos2-2\)




์ฐธ๊ณ 

  1. ๊ถŒํƒœ์› ํ์Šคํ„ฐ๋”” ย ย ย  ์ ๋ถ„๊ธฐ๋ฒ• ๋ถ€๋ถ„์ ๋ถ„
  2. ๊ถŒํƒœ์›ํ์Šคํ„ฐ๋””_mathlatte ย ย ย  ๋ถ€๋ถ„์ ๋ถ„์˜ ๋ชจ๋“  ๊ฒƒ, ํ‘œ๋ฅผ ์ด์šฉํ•œ ์ ๋ถ„ (์œ ์šฉํ•œ ๋ถ€๋ถ„์ ๋ถ„/ ๋Œ€ํ•™๋ฏธ์ ๋ถ„ / ๋Œ€ํ•™๊ธฐ์ดˆ์ˆ˜ํ•™ )
This post is licensed under CC BY 4.0 by the author.
3D GIF